Reversible Temperature-dependent Dispersion-Aggregation Transition of Poly(*N*-isopropylacrylamide)–[60]Fullerene Conjugates

Atsushi Tamura, Katsumi Uchida, and Hirofumi Yajima*

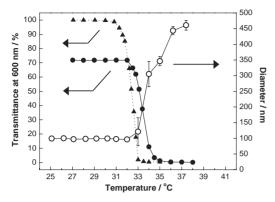
Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601

(Received November 28, 2005; CL-051470; E-mail: yajima@rs.kagu.tus.ac.jp)

Poly(*N*-isopropylacrylamide) (PIPAAm) exhibits a reversible temperature-dependent soluble/insoluble transition at its lower critical solution temperature (LCST) in water. The [60]-fullerene–PIPAAm monoadduct (PIPAAm–C₆₀) was synthesized by the azide addition using azido-terminated PIPAAm. Below LCST, the PIPAAm–C₆₀ was dispersed and formed a micelle-like structure in water. Above LCST, the aggregation of the micelles was observed by turbidity measurements and dynamic light scattering (DLS). The PIPAAm–C₆₀ exhibits rapid and reversible dispersion–aggregation changes in response to narrow range temperature alternation across LCST.

Fullerene possesses a promising utility in the biomedical field due to its unique chemical and physical properties such as antioxidants, enzyme inhibition, and photo-driven DNA cleavage. 1,2 However, the insolubility of fullerene in water has hampered many of its potential applications. One strategy to overcome this problem is the introduction of charged functional groups to fullerene molecules 2 or modification with hydrophilic polymer chains. 3 Many different types of water-soluble [60]fullerene C_{60} derivatives have been so far reported. Among them, the C_{60} end-capped polymers exhibit self-assembly properties such as micelle-like formation because hydrophobic C_{60} core self-assembles on a nanometer scale. 4 Additionaly, the self-assembly behavior of the C_{60} end-capped cationic polymer such as poly[2-(dimethylamino)ethyl methacrylate] was changed by pH and temperature. 5

Poly(*N*-isopropylacrylamide) (PIPAAm) is soluble in aqueous media at a solution temperature below its lower critical solution temperature (LCST). Above this point, it undergoes a discontinuous phase transition, precipitating from solution suddenly and reversibly over a narrow temperature range. ^{6,7} Polymer chains of PIPAAm are hydrated and expanded in water below LCST, and change to compact forms above the LCST by a sudden dehydration and inter- and intramolecular hydrophobic interactions. ⁸ For example, by exploiting the thermoresponsive conformational changes of PIPAAm chains, thermally responsive block copolymer micelles comprising poly(*N*-isopropylacrylamide-*b*-D,L-lactide), which were dispersed below LCST and aggregated above LCST in water, were produced for active targeting as drug carriers. ⁹


In this paper, in order to develop a functionalized C_{60} derivative possessing the property to change the water-solubility in response to temperature for a new biomedical material, the C_{60} with poly(N-isopropylacrylamide) (PIPAAm– C_{60}) monoadduct was synthesized and the dispersion behavior of the PIPAAm– C_{60} having thermally sensitive property in aqueous solution was examined by turbidity measurements and dynamic light scattering (DLS) measurements.

According to the previous study, 7,10 PIPAAm with a termi-

nal hydroxy group at one end (PIPAAm-OH) was synthesized by telomerization using 2-mercaptoethanol as a chain-transfer agent. The molecular weight and the molecular weight distribution of the PIPAAm-OH were determined to be 4280 and 1.58, respectively, by gel permeation chromatography (GPC) in THF at 40 °C (against polystyrene standards). The terminal hydroxy group of the PIPAAm was converted to a tosyl group using p-toluenesulfonyl chloride, followed by installation of an azide group using sodium azide. The introduced azide group of the PIPAAm was confirmed by IR measurements. The azidoterminated PIPAAm (PIPAAm-N₃; 170 mg) and C₆₀ (100 mg; 0.14 mmol) were dissolved in 100 mL of chlorobenzene, and the solution was refluxed at 120 °C for 48 h.11 After filtration and dialysis against water to remove unreacted C₆₀ and PIPAAm-N₃, the brown-colored powder of PIPAAm-C₆₀ was obtained (see Figure S1 in Supporting Information). The molecular weight and the molecular weight distribution of the synthesized PIPAAm-C₆₀ were determined to be 5150 and 1.65, respectively. It was estimated from the GPC results of PIPAAm-OH and PIPAAm-C₆₀ indicated that approximately one PIPAAm chain was introduced to one C₆₀ molecule. In addition, no peaks for multiaddends of PIPAAm were observed from GPC curve of PIPAAm-C₆₀, confirming the monoadduct of PIPAAm to C₆₀ molecules was obtained (see Figure S2 in Supporting Information). At 20 °C (below LCST), the PIPAAm–C₆₀ showed a high solubility in water confirmed by the existence of the characteristic C₆₀ peaks in the UV-vis absorption spectra.¹²

Figure 1 shows the optical transmittance of PIPAAm-C₆₀ in water (2.0 mg/mL) at various temperatures, which was measured at 600 nm with a UV-vis spectrometer. As control, 2.0 mg/mL PIPAAm-OH solution was used. The LCST of the solution was determined as the temperature at which the onset of turbidity took place. Transmittance of the PIPAAm-C₆₀ solution changed in response to temperature, conforming the behavior of PIPAAm-OH. Below 32 °C, transmittance of PIPAAm-C₆₀ was only 72% owing to the brown color of the PIPAAm-C₆₀ solution, but the solution was not turbid, indicating that the PIPAAm-C₆₀ in water was completely dispersed. This transmittance was rapidly reduced near 33 °C, and was almost zero above 35 °C, indicating that the PIPAAm-C₆₀ was aggregated analogously to PIPAAm-OH above 35 °C. LCST values of PIPAAm-OH and PIPAAm-C₆₀ were estimated to be approximately 31 and 32 °C, respectively. It's considered that slight increase of the LCST value of PIPAAm on C60 moiety was induced by a restricted conformation¹³ of PIPAAm chain owing to binding to C_{60} molecules.

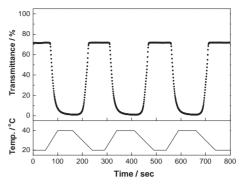

DLS measurements of PIPAAm– C_{60} in water (0.5 mg/mL) were carried out using He–Ne laser (632.8 nm) at the scattering angle of 90° from 25 to 37 °C. Figure 1 shows cumulative average diameter in solution as a function of temperature. The cumulative diameter of PIPAAm– C_{60} in aqueous solution was approx-

Figure 1. Temperature dependence of optical transmittance at 600 nm of PIPAAm (▲) and PIPAAm– C_{60} (●) and the cumulative diameter of PIPAAm– C_{60} (○) in water as a function of temperature. The optical transmittance of both PIPAAm and PIPAAm– C_{60} were measured at a concentration of 2.0 mg/mL. The cumulative diameter of PIPAAm– C_{60} was measured by DLS, at a concentration of 0.5 mg/mL.

imately 100 nm below its LCST. This result indicated that the PIPAAm-C₆₀ formed a self-assembled structure in water, namely, a core-shell micelle structure composed of inner core of C₆₀ molecules and outer shell layer of PIPAAm chains. Further confirmation about the structure was carried out by equilibrium surface tension measurements of PIPAAm-C₆₀ aqueous solution below LCST. PIPAAm-C₆₀ possessed the critical micelle concentration (CMC) of $1.0 \,\mathrm{mg/L}$ ($\gamma_{\mathrm{CMC}} = 44.7 \,\mathrm{mN/m}$) in water, indicating that PIPAAm-C₆₀ in water formed a self-assembled structure like an amphiphilic block copolymer micelle. 14 Okano et al.¹⁵ reported that the alkyl-terminated PIPAAm (PIPAAm-C₁₈H₃₅) in water formed the micelle structure below LCST above its CMC ($80 \,\mathrm{mg/L}$). The CMC of PIPAAm-C₆₀ (1.0 mg/L) was significantly lower than that of PIPAAm-C₁₈H₃₅, indicating that PIPAAm-C₆₀ in water formed a very stable micelle structure induced by hydrophobic interaction and strong π – π stacking effects between C₆₀ molecules. A dramatic change in micelle diameter of PIPAAm-C₆₀ occurred at LCST. Above LCST, PIPAAm chain collapses from its expanded (hydrated) form to compact (dehydrated) form due to the fluctuation of hydrophobic interactions and hydrogen bonding. 16 Thus, this result indicated that as the collapse drove the surface of PIPAAm-C₆₀ micelles to switch from hydrophilic to hydrophobic, the aggregation between PIPAAm-C60 micelles was induced by hydrophobic interactions.

Figure 2 shows the transmittance changes of PIPAAm–C₆₀ solution in response to reversible temperature changes between 20 and 40 °C across the LCST measured by UV–vis spectroscopy. As a result, PIPAAm–C₆₀ exhibited the rapid and reversible changes for thermally responsive transmittance without hysteresis. Below LCST, the transmittance remained unchanged to be about 70%. PIPAAm–C₆₀ was highly dispersed in water, in spite of reversible temperature changes across LCST. On the other hand, when the temperature was above LCST, the PIPAAm–C₆₀ solution was rapidly turbid at every turnover, and therefore, PIPAAm–C₆₀ in water were aggregated. Correspondingly, the cumulative average micelle diameter in PIPAAm–C₆₀ solution, which was measured by DLS, was rapidly and reversibly varied

Figure 2. Time course of transmittance (600 nm) changes for the PIPAAm– C_{60} solution (2.0 mg/mL) in response to heating–cooling cycles between 20 and 40 °C across its LCST.

in response to a reversible temperature changes across LCST. This result indicated that the dispersion–aggregation transition of the PIPAAm– C_{60} micelles was reversible in response to temperature changes.

In summary, we have synthesized new water-soluble C_{60} derivatives with PIPAAm, possessing a unique property of the reversible dispersion–aggregation transition of the conjugate micelle in water in heating/cooling thermal cycles through the LCST. The conjugate of multifunctional C_{60} with stimuliresponsive polymers could be exploited for the development of an intelligent material in biomedical fields.

References

- 1 E. Nakamura, H. Isobe, Acc. Chem. Res. 2003, 36, 807.
- 2 L. L. Dugan, D. M. Turetsky, C. Du, D. Lobner, M. Wheeler, C. R. Almli, C. K.-F. Shen, T.-Y. Luh, D. W. Choi, T.-S. Lin, *Proc. Natl. Acad. Sci. U.S.A.* 1997, 94, 9434.
- C. Wang, Z.-X. Guo, S. Fu, W. Wu, D. Zhu, *Prog. Polym. Sci.* 2004, 29, 1079.
- 4 X. Wang, S. H. Goh, Z. H. Lu, S. Y. Lee, C. Wu, *Macromolecules* **1999**, *32*, 2786.
- S. Dai, P. Ravi, C. H. Tan, K. C. Tam, Langmuir 2004, 20, 8569
- M. Heskins, J. E. Guillet, J. Macromol. Sci., Chem. 1968, A2, 1441
- 7 R. Yoshida, K. Uchida, Y. Kaneko, K. Sakai, A. Kikuchi, Y. Sakurai, T. Okano, *Nature* 1995, 374, 240.
- 8 R. Yoshida, K. Sakai, T. Okano, Y. Sakurai, *J. Biomater. Sci.*, *Polym. Ed.* **1994**, *6*, 585.
- F. Kohori, K. Sakai, T. Aoyagi, M. Yokoyama, Y. Sakurai,
 T. Okano, J. Controlled Release 1998, 55, 87.
- 10 Y. G. Takei, T. Aoki, K. Sanui, N. Ogata, T. Okano, Y. Sakurai, Bioconjugate Chem. 1993, 4, 341.
- 11 M. Prato, Q. C. Li, F. Wudl, V. Lucchini, J. Am. Chem. Soc. 1993, 115, 1148.
- 12 S. Deguchi, R. G. Alargova, K. Tsuji, *Langmuir* **2001**, *17*,
- 13 T. Yakushiji, K. Sakai, A. Kikuchi, T. Aoyagi, Y. Sakurai, T. Okano, *Langmuir* 1998, 14, 4657.
- 14 K. Kataoka, A. Harada, Y. Nagasaki, Adv. Drug Delivery Rev. 2001, 47, 113.
- 15 J. E. Chung, M. Yokoyama, K. Suzuki, T. Aoyagi, Y. Sakurai, T. Okano, Colloids Surf., B 1997, 9, 37.
- 16 H. G. Schild, Prog. Polym. Sci. 1992, 17, 163.